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Abstract

A generalized plastic zone theory based on the ParisÕ displacement formula is presented to study inelastic fracture

properties. This theory is capable of analyzing inelastic fracture characteristics of engineering materials in general. The

so-called size e�ect is predicted for softening materials. A brittleness index is also discussed based on this theory. It is

illustrated that the brittleness index may be used to characterize the inelastic fracture properties of the structures. Ó 2000

Elsevier Science Ltd. All rights reserved.
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1. Introduction

The plastic zone size may be estimated by IrwinÕs (1960) e�ective crack length method for metallic
structures. This e�ective crack length concept is based on the fact that most metallic materials are con-
siderably ductile and have a nearly constant yield strength after the stress in the material reaches its peak
value. His plastic zone formula is based on the concept of force balance near the crack tip and is con-
siderably accurate in small scale yielding cases when compared with the more accurate DugdaleÕs strip
yielding model. However, extension of this theory to cementitious material, such as mortar and concrete
may initiate technical problems due to the softening properties of the material.

Concrete and mortar are known to be softening materials and have a descending cohesive force. Pre-
vious researches have shown di�erences in the fracture properties between cementitious materials and
metals (Carpinteri, 1985; Bazant, 1985; Shah, 1984; Sih, 1984). Several researchers concluded that this
softening cohesive force plays a key role in determining the fracture properties of the concrete structures,
especially in the case of non-linear fracture mechanics.
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The so-called ®ctitious crack model proposed by Hillerborg (1976, 1979, 1985) has been widely accepted
as an e�ective method in modeling the fracture properties of concrete and reinforced concrete structures.
This model is based on the classical plastic zone theory by applying variable cohesive force to the plastic
zone. However, this concept has been discussed among researchers in the ®eld of fracture of metallic
structures. The use of variable cohesion in the plastic zone to model the hardening properties of di�erent
metals was proposed by Chen (1975). The application of this method, however, was limited due to
mathematical di�culties, especially for the materials with variable cohesion. Chen realized this and sug-
gested the use of numerical method to solve individual problems (Chen, 1975).

The development of digital computer technology and numerical methods, especially the ®nite element
method, makes the ®ctitious crack model viable. This model, originally proposed by Hillerborg revealed a
high potential in predicting the fracture properties of concrete structures. Numerous researches and
technical papers have been published in the literature on this topic since the 1970s. However, most of these
researches concentrated on the analysis methods and case studies.

The development of an analytical method may extend the use of plastic zone theory to predict the
fracture and failure and fatigue properties of softening materials in engineering practice. The key issues are
(1) Prediction of the length of the plastic zone in a cementitious material, and (2) The crack opening
displacement in the plastic zone.

These two problems are fundamental to the application of fracture mechanics to cementitious materials.
In the following sections of this article, a generalized plastic zone theory is presented based on the ParisÕ
displacement formula. A closed form solution derived from the governing integral equations of the gen-
eralized plastic zone theory using functional analysis (Wang, 1995) will be illustrated.

The study of plastic zone formation and propagation leads to a better understanding of fatigue crack
growth. A well formulated closed form solution of plastic zone size, cracking opening shape, and crack tip
opening size will also provide much needed tools in qualifying energy release rate for energy based crack
growth rate theory (Wang, 1991; Wang and Hsu, 1994).

2. Generalized plastic zone theory

Paris (1957), Paris and Erdogan (1963) and Taha et al. (1973) proposed a method to calculate certain
displacements relevant to crack problems. His method was based on CastiglianoÕs theorem and fracture
mechanics. Assume that the total strain energy of a cracked body is U under an external load of P. The
crack opening displacement DF (Fig. 1) was found as

DF � 2

E0

Z ac

a
F

KIP

oKIF

oF
da; �1�

where KIF is the stress intensity factor caused by a couple of virtual forces F on the position in question; KIP,
the stress intensity factor corresponding to the external load P; a, the integral variable; and ac and aF are the
position of the crack tip and the position where the displacement is to be calculated.

Using the principle of superposition, the Paris formula can be applied to the classical plastic zone theory
and leads to a generalized approach to the problem. Note that the stress intensity factor of a linear elastic
cracked body shall be a linear function of the applied load. Thus oKIF=oF in ParisÕ formula can be con-
sidered as the virtual strength intensity factor, kD(n, x), corresponding to a unit force F. ParisÕ formula can
be written as:

d�x� �
Z a

0

K�n�kD�n; x�dn; �2�
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where a is the crack length, K, the stress intensity factor, and n, the moving coordinate along the crack
length.

In the case of a distributed cohesive force r(b) exists in the plastic zone [a, c], (b varies between a and c),
the negative contribution by the distributed cohesive force to the total stress intensity factor shall be
considered in computing the crack opening displacement in Eq. (2) . By using the principle of superposition,
the crack opening displacement can be found as (Fig. 2):

d�x� � d1�x� � d2�x�; �3�
where

d1�x� � 2

E0

Z c

x

K�n�
2

�
ÿ
Z x

a
Kc�n; d; b�db

�
kD�n; x�dn

� 2

E0

Z c

x

K�n�
2

kD�n; x�dnÿ 2

E0

Z c

x

Z n

a
Kc�n; d; b�db

� �
kD�n; x�dn; �4�

d2�x� � 2

E0

Z c

x

K�n�
2

kD�n; x�dnÿ 2

E0

Z c

x

Z n

a
Kc�n; d; b�db

� �
kD�n; x�dn: �5�

Eqs. (4) and (5) lead to a singular integral equation:

d�x� � 2

E0

Z c

x
K�n�kD�n; x�dnÿ 2

E0

Z c

x
kD�n; x�dn

Z n

a
Kc�n; d; b�db: �6�

Fig. 1. Crack opening displacement by CastiglianoÕs theorem.
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The smooth closure condition can be used to identify the boundary condition needed to solve the
problem. The physical meaning of the smooth closure condition is that the stress intensity factor at the tip
of a plastic zone is equal to zero, which indicates that the stress ®eld has no singularity at this point,
(Dugdale, 1960), i.e.,

K�c� ÿ
Z c

a
Kc�n; d; b�db � 0: �7�

As an example, the solution for a wide plate with a central crack problem (constant distributed cohesive
force) is illustrated subsequently. In the case of variable distributed cohesive forces, Eq. (6) becomes a
singular integral equation with a free boundary condition as speci®ed in Eq. (7). Closed form solutions for
the above equation do not exist in general.

However, when the material has a constant cohesion, Eqs. (6) and (7) become an integration of a given
function, and thus, may have exact closed form solutions. In fact, most ductile metals can be considered to
have a constant cohesion after yielding. Hence, the applications of Eqs. (6) and (7) to metallic structures
have led to good results (Rice, 1966, 1967, 1968).

As an example, the exact solution for the problem of a wide plate with a single central crack (see Fig. 3)
is derived to illustrate the proposed generalized plastic zone theory.

The stress intensity factor of the specimen under a distant uniform stress of such a specimen is given
below:

Fig. 2. Generalized process theory by ParisÕ displacement formula.
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K�n� �
������
pn

p
r0: �8�

The virtual stress intensity factor is

kD�n; x� � 2������
pn
p n��������������

n2 ÿ x2
p ; �9�

and the stress intensity factor by the cohesive force in a unit length is

Kc�n; d; b� � 2������
pn
p nry���������������

n2 ÿ b2
p : �10�

Thus, the crack opening displacement d(x) can be found by Eq. (6)

d�x� � 4r0

E0
��������������
c2 ÿ x2
p

ÿ 8

pE0

Z c

x

n��������������
n2 ÿ x2

p dn
Z n

a

ry���������������
n2 ÿ b2

p db; �11�

and the boundary condition reads:�����
pc
p

r0 �
Z c

a

2�����
pc
p cry��������������

c2 ÿ b2
p db �12�

or

pr0

2
�
Z c

a

ry��������������
c2 ÿ b2
p db �13�

Fig. 3. Centrally cracked wide plate subjected to distant uniform tensile stress.
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A formula similar to Eq. (11) was proposed by Chen (1975) by using ParisÕ formula for this particular
problem. However, the boundary condition used in ChenÕs research was derived by vanishing of an integral
Kernel of the equation. For the problem with constant cohesion, his research led to the same result listed
hereafter.

Eqs. (10) and (13) lead to the following solutions:

d�x� � 4

E0
��������������
c2 ÿ b2
p

r0

�
ÿ 2ry

p
cosÿ1 a

c

�
� 4ry

pE0
a ln

��������������
c2 ÿ a2
p � ��������������

c2 ÿ x2
p��������������

c2 ÿ a2
p

ÿ
��������������
c2 ÿ x2
p

 !"

ÿ x ln
x
��������������
c2 ÿ a2
p

� a
��������������
c2 ÿ x2
p

x
��������������
c2 ÿ a2
p

ÿ a
��������������
c2 ÿ x2
p

 !#
;

�14�

and

r0 � 2ry

p
cosÿ1 a

c
�15�

Eq. (14) can be simpli®ed by using Eq. (15),

d�x� � 4ry

pE0
a ln

��������������
c2 ÿ a2
p � ��������������

c2 ÿ x2
p��������������

c2 ÿ a2
p

ÿ
��������������
c2 ÿ x2
p

 !"
ÿ x ln

x
��������������
c2 ÿ a2
p � a

��������������
c2 ÿ x2
p

x
��������������
c2 ÿ a2
p

ÿ a
��������������
c2 ÿ x2
p

 !#
: �16�

The above solutions are identical to those obtained by using the Westg�ard stress function (Dugdale,
1960). This solution has been widely used to verify di�erent approximations for non-linear fracture me-
chanics.

3. Non-linear fracture characteristics of softening materials

Eq. (16) shows the crack opening displacement in the plastic zone of materials with perfectly plastic
cohesion, which is a good approximation for metal structures. However, as mentioned in the previous
sections, concrete is a typical softening material with a descending cohesive force. Thus, this solution is not
applicable to the problems of this kind; instead, a variable cohesion shall be used. This variable cohesion is
known to be a function of crack opening displacement for cementitious material. Thus, Eq. (6) becomes a
singular integral equation with a free boundary problem. Its boundary condition is given by Eq. (7).

General solutions for integral equations of this kind are not available. A detailed solution for a variable
cohesive force is illustrated in the following section using an iterative functional analysis method. This
method is expected to have a fast convergence within the range of the practical problems. The numerical
experiment presented in the following sections illustrates the fast convergence as expected from the analysis.

In case of a varying cohesion s[d ], the governing equation for a centrally cracked plate is

d�x� � 4r0

E0
��������������
c2 ÿ x2
p

ÿ 8

pE0

Z c

x

n��������������
n2 ÿ x2

p dn
Z n

a

r d�b�� ����������������
n2 ÿ b2

p db �17�

and the boundary condition is

pr0

2
�
Z c

a

r d�b�� ���������������
c2 ÿ b2
p db �18�

For simplicity, a linear cohesion vs. crack opening displacement relation is assumed in the analysis (see
Fig. 4). The use of a linear curve to approximate the descending part of soften material was proposed by
Hillerborg et al. (1976) to study the non-linear fracture properties of concrete. In the past, di�erent models
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were proposed in numerous studies, they varied from simple linear curves to exponential curves. Also, they
all achieved certain objectives in modeling the fracture behavior of softening materials, such as concrete and
mortar (Shah et al., 1995). Eqs. (17) and (18) are similar to Eqs. (11) and (13). However, the constant
cohesion is replaced by a function of r[d(x)]. Thus, Eq. (17) becomes a non-linear Volterra integral
equation, except for the fact that the limit c also depends on d. General solutions of the integral equations
of this kind are not available.

Picard iteration (successive approximation), a standard technique in functional analysis, is used to ®nd
an approximate closed form solution of this integral equation. Suppose an integral equation has a form of

Tf �x� � g�x� � k
Z

B
K�x; s�Gf �s�dx; �19�

where f (x) is the desired solution, K and g are given functions, T and G are given operators.
By assuming an initial function f1, T leads to a new function of f2; or in general,

fn�1 � Tfn: �20�
This iteration method is expected to converge rapidly. The error caused in the iteration may be estimated

by the following equation

kfn ÿ f k6 en; �21�
where f is the true solution, fn, the estimation after the nth iteration, and e, a positive number much smaller
than 1. kfn ÿ f k denotes the maximum type norm on a suitable space of functions containing the functional
sequence {fn} (Wang and Hsu, 1994). More details are provided in appendix.

In the following analysis, a linearly descending cohesion versus crack opening displacement relation is
used to simulate the softening properties of the concrete material. The cohesion versus crack opening
displacement relation reads

r
ft

� 1ÿ d
wc

�22�

Fig. 4. Centrally cracked wide plate subjected to distant tensile stress (softening materials).
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in which, r is the cohesion in accordance with the crack opening displacement d in the plastic zone, wc, the
critical crack opening displacement of the concrete, and ft, the tensile stress of the concrete.

In the case that the crack opening displacement in the plastic zone is given by a function of the abscissa,
or d(b), the local cohesion can be uniquely determined using Eq. (22). However, the crack opening dis-
placement d(b) is unknown and shall be determined by the governing equation.

In order to ®nd the approximate closed form solution, the iterative method may be performed by as-
suming an initial deformed shape of the plastic zone. For simplicity, a linear function is assumed for the
®rst iteration. Thus, the cohesion in the plastic zone may be found as follows:

r
ft

� 1ÿ d�a�
wc

cÿ b
cÿ a

; �23�

where a is the initial crack length, b, the integral variable, and c, the sum of the initial crack length and the
size of the plastic zone, respectively. d(a) is the crack tip opening displacement.

By doing so, the integral equation becomes an integration of a given function. Introducing dimensionless
parameters: a � a=c; s � x=c; z � n=c; s � b=c and k� � d�a�=wc�1ÿ a�. Eq. (24) becomes,

d�s� � 4r0

E
c
��������������
12 ÿ s2
p

ÿ 8ftc
pE

Z 1

s

fdf��������������
f2 ÿ s2

p Z f

a

1ÿ k��1ÿ s���������������
f2 ÿ s2

p ds: �24�

Eq. (24) leads to the following formula for crack opening displacement:

d�s� �
������������
1ÿ s2
p

�1
h
ÿ k�� p

2

�
ÿ arcsin a

�
� k�

�������������
1ÿ a2
p i

� a�1ÿ k��
Z 1

s

��������������
f2 ÿ s2

f2 ÿ a2

s
1

f
dfÿ k�

2

�������������
1ÿ a2
p ������������

1ÿ s2
p

� k�

2

s2 ÿ a2

2
ln

������������
1ÿ s2
p

ÿ
�������������
1ÿ a2
p

s2 ÿ a2

" #( )
;

�25�
and the boundary condition yields

�1ÿ k�� p
2

�
ÿ arcsin a

�
� k�

�������������
1ÿ a2
p

� p
2

r0

ft

: �26�

Thus, the solution may be simpli®ed as follows:

d�s� � p
2

r0

ft

������������
1ÿ s2
p

� a�1ÿ k��
Z 1

s

��������������
f2 ÿ s2

f2 ÿ a2

s
1

f
dfÿ k�

2

�������������
1ÿ a2
p ������������

1ÿ s2
p

� k�

2

s2 ÿ a2

2
ln

������������
1ÿ s2
p

ÿ
�������������
1ÿ a2
p

s2 ÿ a2

" #( )
: �27�

The crack tip opening displacement may be found by letting s! a, and it reads

d�a�
wc

� 8ft

pE
c

wc

p
2

r0

ft

�������������
1ÿ a2
p�

ÿ k�

2
�1ÿ a2�

�
� W

a
p
2

r0

ft

�������������
1ÿ a2
p�

ÿ k�

2
�1ÿ a2�

�
; �28�

where

W � 8fta
wcpE

; �29�
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and

k� � ln�1=a�
1ÿa
W � ln�1=a� � 1ÿa2

a

: �30�

This functional iterative method is expected to have fast convergence. With a properly chosen initial
deformed shape, the ®rst iteration may give a very good approximation of the true solution.

For a centrally cracked plate, an unstable crack progress occurs when the crack tip opening displacement
reaches the critical value of wc under the applied stress r0. The maximum normalized tensile strength, r0/ft

of the specimens with di�erent crack lengths predicted by the above equations are listed in Table 1. As the
crack length increases from 0 to 10 m, the predicted nominal stress at failure of the specimen drops from
1.0ft to 0.151ft. Calculation shown in Table 1 assumes a concrete mixture with a tensile strength of 2.9 MPa,
a critical crack opening displacement of 120 lm, a modulus of elasticity of 29.6 MPa. A 10-m crack may not
seem practical in building or bridge structures, but such cracks are not rare in mass concrete structures,
such as gravity dams.

By the classical plastic zone theory, the critical J integral value is 1/2wc ft, or 174 N/m for the material
chosen. In the case of small scale yielding, the critical stress intensity factor is equal to

�������
JcE
p

or 2.269 ´ 106

N/mÿ3=2.
The result from the generalized plastic zone theory is given in Table 1. The numerical result plotted in a

logarithmic scale graph is shown in Fig. 5. The graph shows the typical 1:2 slope in the linear elastic range.
It also shows the smooth transition from the strength failure criterion to the stress intensity factor criterion
of the material. Therefore, considering the fact that results listed in Table 1 and Fig. 5 are computed from
the ®rst iterative solution, it clearly demonstrates the e�ectiveness and theoretical signi®cance of the pro-
posed general formulation. This result also re¯ects the fast convergence of the iterative method used in this
analysis.

Eq. (29) may be written in the form of stress intensity factor and Jc as follows:

W � 4paf 2
t

1
2
wcftp2E

� 4K2
nf

p2JcE
� 0:4

K2
nf

JcE
; �31�

where Knf is a nominal stress intensity factor of structures with crack length� a under maximum stress
allowed under plastic yielding criterion. For instance, Knf for a centrally cracked wide plate with tensile
strength of ft is

������
pa
p

ft. De®ning a brittleness index w,

Table 1

Nominal stress at failure predicted by generalized plastic zone theory

a(m) r0/ft W w a/c K (N/mÿ3=2)

0.001 0.995 0.002 0.005 0.003 1.618 ´ 105

0.025 0.929 0.052 0.128 0.074 7.547 ´ 105

0.050 0.881 0.104 0.257 0.137 1.012 ´ 106

0.100 0.809 0.208 0.513 0.241 1.315 ´ 106

0.200 0.711 0.416 1.026 0.391 1.635 ´ 106

0.300 0.644 0.624 1.540 0.494 1.813 ´ 106

0.400 0.593 0.832 2.053 0.568 1.928 ´ 106

0.500 0.553 1.040 2.566 0.623 2.008 ´ 106

0.600 0.520 1.247 3.077 0.666 2.069 ´ 106

0.700 0.492 1.455 3.590 0.700 2.115 ´ 106

0.800 0.468 1.663 4.103 0.728 2.152 ´ 106

0.900 0.448 1.871 4.617 0.751 2.183 ´ 106

1.000 0.430 2.079 5.130 0.771 2.208 ´ 106

5.000 0.211 10.395 25.649 0.945 2.422 ´ 106

10.000 0.151 20.791 51.300 0.972 2.453 ´ 106

W. Wang et al. / International Journal of Solids and Structures 37 (2000) 7533±7546 7541



w � K2
nf

JcE
: �32�

Experimental results have indicated that the nominal stress at failure of concrete structures decreases
with increasing in structural size. The traditional explanation was based on WeibullÕs weakest link statistical
theory. (Weibull, 1939). This phenomenon is believed to be related to crack propagation, and thus may be
better explained by using the theory of fracture mechanics. But the di�culty is to achieve a smooth
transition between strength criterion and fracture energy criterion.

Since the proposed brittleness index is structural size related factor, the size e�ect may be represented by
using the brittleness factor. Fig. 5 shows the relation between the brittleness index and nominal stress at
failure of centrally cracked wide concrete plates. Structures with smaller brittleness indexes have higher
ductility, and the nominal failure stresses are close to that predicted by the plastic theory. These structures
have brittleness indexes less than 0.05 as indicated in Fig. 5. Note that W � 8fta=wcpE for a centrally
cracked wide plate, W also re¯ect the ratio of a=wc, where wc is the critical crack opening width.

Structures with brittleness indexes greater than 5 may be classi®ed as brittle structures. Linear elastic
fracture mechanics may be used to analyze these structures. The failure criterion in this case is K 6KIC.

However, for the structures with a brittleness index between 0.05 and 5, neither the traditional theory of
plasticity nor linear fracture mechanics is able to predict the structural behavior with higher accuracy. The
use of non-linear fracture mechanics is desirable. If the strip-yielding model is to be used, the proposed
method may provide e�ective tool for the materials with variable cohesion.

The maximum sizes of plastic zones at the time of failure are listed in Table 1 and they are illustrated in
Figs. 6 and 7. Fig. 7 shows a linear relationship between the maximum size of the plastic zone and the
brittleness index in a logarithmic scale. Fig. 8 shows the maximum stress intensity factor of the specimen at
the time of failure.

The brittleness index w has a straightforward physical meaning. It is the ratio between the applied
fracture energy-release rate and the fracture energy toughness (Jc) at the time of failure of an ideal plastic-
yielding-brittle-fracture material (Wang, 1995). The de®nition of an ideal plastic-yielding-brittle-fracture
material is the material that will fail due to either plastic ¯ow or unstable crack propagation. Thus, if w < 1,
a structure will fail due to plastic ¯ow, or brittle fracture, i.e.:

Fig. 5. Size e�ect for cemmentitious material by generalized plastic zone theory.
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r � ry for w < 1;

K � KIC for wP 1:

These two criteria are straight lines in a logarithm scaled coordinate system as shown in Fig. 5. The line
indicates the fracture criterion has a slope of 1:2 as expected. Engineering materials must converge to these
lines in extreme cases when w>1 and w?1. Theoretically, the theory of plasticity may only apply to the
structures with w� 0. Also, the principle of linear fracture mechanics is true only when w�1. However, in
engineering practice, the theory of plasticity and linear fracture mechanics may apply to the structures of
certain w value with considerable accuracy. Better theories should be able to predict a nominal stress that
converges to result from both the plastic theory and the linear fracture mechanics. They should also provide
a smooth transition between the two.

Results from the analysis of another material with a smaller critical crack opening displacement of 0.06
mm is also shown in Fig. 5. The results from these two analyses are almost identical as illustrated in Fig. 5,

Fig. 6. Normalized maximum plastic zone size at the time of failure (of normal scale).

Fig. 7. Normalized maximum plastic zone size at the time of failure (of logarithmic scale).
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even though their critical crack tip opening displacements di�er from one another by 100%. This obser-
vation suggests that this brittleness index is independent of the material and structural properties, and may
be used to identify the ductility and failure mode of a structure. Further studies are necessary to verify this
theorem.

4. Conclusions

The ®ndings of this research can be summarized in the following:
1. The general formulation for strip yielding model presented in this article is able to predict the non-linear

fracture properties of materials with constant or variable cohesion. When applying to softening materi-
als, this method is able to predict the size e�ect. The nominal stress at failure predicted by the proposed
method converges well to results by the plastic theory and the linear elastic fracture mechanics. The pro-
posed method also provides a smooth transition between the two.

2. A brittleness index derived based on the results from the generalized plastic zone theory may be used as
an indicator to determine the ductility of structures. The classical theory of plasticity may be used for
structures with a brittleness index less than 0.05. When this index is greater than 5, linear elastic fracture
mechanics becomes applicable. However, structures with a brittleness index between 0.05 and 5 shall be
analyzed using non-linear fracture mechanics.

Appendix A. Convergence proof for integral equations

The integral equation

d x� � � 4r0

E0
��������������
c2 ÿ x2
p

ÿ 8

pE0

Z c

x

ndn��������������
n2 ÿ x2

p Z x

a

r d�s�� ���������������
n2 ÿ s2

p ds �A:1�

represents a free-boundary problem since c needs to be determined. We use the auxillary equation

pr0

2
�
Z c

a

r�d�s����������������
c2 ÿ s2
p ds �A:2�

Fig. 8. Maximum stress intensity factor at the time of failure.
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in order to determine c. Assuming that d is continuous on the interval [a, c], it is not di�cult to show that
Eq. (A.2) is a necessary and su�cient condition for d�x� � o�

��������������
c2 ÿ x2
p

� as x! cÿ; i.e.,

d�x���������������
c2 ÿ x2
p ! 0 as x! c with x < c:

To see this note that for x near c Eq. (A.1) can be written in the form

d x� � � 4r0

E0
��������������
c2 ÿ x2
p

ÿ 8

pE0

Z c

x

n��������������
n2 ÿ x2

p Z c

a

r d s� �� �ds��������������
c2 ÿ s2
p

�
� h

�
dn;

where h! 0 uniformly as x! cÿ. Then upon substitution of Eq. (A.2), we obtain

d x� � � ÿ 8

pE0

Z c

x

hndn��������������
n2 ÿ x2

p :

For the convergence proof, we assume that r is a non-negative, bounded function with continuous de-
rivatives of all orders. Moreover, r(d) is assumed to satisfy

kr�d
�
� ÿ r d� �k6 k1kd

�
ÿ dk; �A:3�

where k1 is a positive constant much smaller than E0 and kk is the uniform norm for continuous functions
de®ned by

kf k6 max jf x� �j : af 6 x6 cg:
Note that the above assumptions are consistent with the application at hand.

It is easy to show that the assumptions imply that I(d,c), de®ned to be the integral in Eq. (A.2), is a
monotone increasing function of c for a ®xed continuous d. Consequently, Eq. (A.2) has a unique solution
of the form c� c(d) satisfying

I d; c d� �� � � pr0

2

It is now easy to show that the above assumptions imply that there is a positive k2 much smaller than E0

such that

kc�d
�
� ÿ c d� �k6 k2kd

�
ÿ dk: �A:4�

With the above the notation, Eq. (A.1) can be rewritten in the compact functional form

d � T �d�; �A:5�
where

T d� � x� � :� 4r0

E0

��������������������
c d� �2 ÿ x2

q
ÿ 8

pE0

Z c d� �

x

ndn��������������
n2 ÿ x2

p Z x

a

r d s� �� ���������������
n2 ÿ s2

p ds:

On using Eq. (A.3) and Eq. (A.4) in Eq. (A.5) after a simple computation of estimates, we ®nd that

kT �d
�
� ÿ T d� �k6 kkd

�
ÿ dk; �A:6�

where k is a positive number much smaller than 1. Hence T is a contracting mapping, so the successive
approximations de®ned by

dn�1 � T dn� �; n P 1

converge very rapidly to a continuous solution d�. In fact, we have
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kdn�1 ÿ d�k6 kn

1ÿ k
kd2 ÿ d1k

(cf. J. Dugundji, 1966). The corresponding value of the end point c is then obtained by setting c � c d�� �.
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